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Overview

The divergence form of Green’s Theorem in the plane states that the net
outward flux of a vector field across a simple closed curve can be
calculated by integrating the divergence of the field over the region
enclosed by the curve.

The corresponding theorem in three dimensions, called the Divergence
Theorem, states that the net outward flux of a vector field across a closed
surface in space can be calculated by integrating the divergence of the
field over the region enclosed by the surface.
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Mikhail Vassilievich Ostrogradsky

Mikhail Vassilievich Ostrogradsky (1801-1862) was the first mathematician
to publish a proof of the Divergence Theorem.

Upon being denied his degree at Kharkhow Univesity by the minister for
religious affairs and national education (for atheism), Ostrogradsky left
Russia for Paris in 1822, attracted by the presence of Laplace, Legendre,
Fourier, Poisson, and Cauchy.

While working on the theory of heat in the mid-1820s, he formulated the
Divergence Theorem as a tool for converting volume integrals to surface
integrals.
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Cal Fridrich Gauss

Cal Fridrich Gauss (1777-1855) has already proved the theorem while
working on the theory of gravitation, but his notebooks were not to be
publised until many years later.

The theorem is sometimes called Gauss’s theorem.

The list of Gauss’s accomplishments in science and mathematicss is truly
astonishing, ranging from the invention of the electric telegraph (with
Wilhelm Weber in 1833) to the development orbits and to work in
non-Euclidean geometry that later became fundamental to Einstein’s
general theory of relativity.

P. Sam Johnson Divergence Theorem 4/36



Divergence in Three Dimensions

The divergence of a vector field F = M(x , y , z)i + N(x , y , z)j + P(x , y , z)k
is the scalar function

divF = ∇.F =
∂M

∂x
+
∂N

∂y
+
∂P

∂z
.

The symbol “div F” is read as “divergence of F” or “div F.” The notation
∇.F is read “del dot F.”

Div F has the same physical interpretation in three dimensions that it does
in two. If F is the velocity field of a fluid flow, the value of div F at a point
(x , y , z) is the rate at which fluid is being piped in or drained away at
(x , y , z).

The divergence is the flux per unit volume or flux density at the point.
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The Divergence Theorem

The Divergence Theorem says that under suitable condition the outward
flux of a vector field across a closed surface (oriented outward) equals the
tiple integral of the divergence of the field over the region enclosed by the
surface.

The Divergence Theorem

The flux of a vector field F = M i + N j + Pk across a closed oriented
surface S in the direction of the surface’s outward unit normal field n
equals the integral of ∇.F over the region D enclosed by the surface :∫∫

S
F.n dσ =

∫∫∫
D
∇.F dV .
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Exercises

Exercise 1.

Find the divergence of the gravitational field F = −GM(x i+y j+zk)

(x2+y2+z2)3/2 .

Solution for Exercise 1 :

F = −GM(x i+y j+zk)

(x2+y2+z2)3/2

⇒ divF = −GM
[

(x2+y2+z2)3/2−3x2(x2+y2+z2)1/2

(x2+y2+z2)3

]
−GM

[
(x2+y2+z2)3/2−3y2(x2+y2+z2)1/2

(x2+y2+z2)3

]
−GM

[
(x2+y2+z2)3/2−3z2(x2+y2+z2)1/2

(x2+y2+z2)3

]
= −GM

[
3(x2+y2+z2)2−3(x2+y2+z2)(x2+y2+z2)

(x2+y2+z2)7/2

]
= 0
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Exercises

Exercise 2.

Use the Divergence Theorem to find the outward flux of F across the
boundary of the region D.

(a) Cube : F=(y-x)i+(z-y)j+(y-x)k
D : The cube bounded by the planes x = ±1, y = ±1, and z = ±1

(b) F = x2i + y2j + z2k

(a) Cube : D : The cube cut from the first octant by the planes x = 1,
y = 1, and z = 1

(b) Cube : D : The cube bounded by the planes x = ±1, y = ±1, and
z = ±1

(c) Cylindrical can : D : The region cut from the solid cylinder x2 + y2 ≤ 4
by the planes z = 0 and z = 1
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Solution for Exercise 2

1. ∂
∂x

(y − x) = −1, ∂
∂y

(z − y) = −1, ∂
∂z

(y − x) = 0⇒ ∇ · F = −2⇒ Flux

=
∫ 1
−1

∫ 1
−1

∫ 1
−1−2dxdydz = −2(23) = −16

2. ∂
∂x

(x2) = 2x , ∂
∂y

(y2) = 2y , ∂
∂z

(z2) = 2z ⇒ ∇ · F = 2x + 2y + 2z

(a) Flux =
∫ 1

0

∫ 1

0

∫ 1

0
(2x + 2y + 2z)dxdydz =∫ 1

0

∫ 1

0

[
x2 + 2x(y + z)

]1
0
dydz =

∫ 1

0

∫ 1

0
(1 + 2y + 2z)dydz =∫ 1

0

[
y(1 + 2z) + y2

]1
0
dz =

∫ 1

0
(2 + 2z)dz =

[
2z + z2

]1
0

= 3

(b) Flux =
∫ 1

−1

∫ 1

−1

∫ 1

−1
(2x + 2y + 2z)dxdydz =∫ 1

−1

∫ 1

−1

[
x2 + 2x(y + z)

]1
−1

dydz =
∫ 1

−1

∫ 1

−1
(4y + 4z)dydz =∫ 1

−1

[
2y2 + 4yz

]1
−1

dz =
∫ 1

−1
8zdz =

[
4z2
]1
−1

= 0

(c) In cylindrical coordinates, Flux =
∫∫∫
D

(2x + 2y + 2z)dxdydz

=
∫ 1

0

∫ 2π

0

∫ 2

0
(2r cos θ + 2r sin θ + 2z)rdrdθdz =∫ 1

0

∫ 2π

0

[
2
3 r

3 cos θ + 2
3 r

3 sin θ + zr2
]2

0
dθdz

=
∫ 1

0

∫ 2π

0

(
16
3 cos θ + 16

3 sin θ + 4z
)
dθdz =∫ 1

0

[
16
3 sin θ − 16

3 cos θ + 4zθ
]2π

0
dz =

∫ 1

0
8πzdz =

[
4πz2

]1
0

= 4π
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Exercises

Exercise 3.

Use the Divergence Theorem to find the outward flux of F across the
boundary of the region D.

1. Cylinder and paraboloid : F = y i + xy j− zk
D : The region inside the solid cylinder x2 + y2 ≤ 4 between the
plane z = 0 and the paraboloid z = x2 + y2

2. Sphere : F = x2i + xz j + 3zk
D : The solid sphere x2 + y2 + z2 ≤ 4

3. Portion of sphere : F = x2i− 2xy j + 3xzk
D : The region cut from the first octant by the sphere
x2 + y2 + z2 = 4
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Solution for Exercise 3

1. ∂
∂x

(y) = 0, ∂
∂y

(xy) = x , ∂
∂z

(−z) = −1⇒ ∇ · F = x − 1; z = x2 + y2 ⇒ z = r2 in

cylindrical coordinates ⇒ Flux

=
∫∫∫
D

(x − 1)dzdydx =
∫ 2π

0

∫ 2
0

∫ r2

0 (r cos θ − 1)dzrdrdθ =
∫ 2π

0

∫ 2
0 (r3 cos θ − r2)rdrdθ

=
∫ 2π

0

[
r5

5
cos θ − r4

4

]2

0
dθ =

∫ 2π
0

(
32
5

cos θ − 4
)
dθ =

[
32
5

sin θ − 4θ
]2

0
π = −8π

2. ∂
∂x

(x2) = 2x , ∂
∂y

(xz) = 0, ∂
∂z

(3z) = 3⇒ ∇ · F = 2x + 3⇒ Flux =
∫∫∫
D

(2x + 3)dV

=
∫ 2π

0

∫ π
0

∫ 2
0 (2ρ sinφ cos θ + 3) (ρ2 sinφ)dρdφdθ =∫ 2π

0

∫ π
0

[
ρ4

2
sinφ cos θ + ρ3

]2

0
sinφdφdθ

=
∫ 2π

0

∫ π
0 (8 sinφ cos θ + 8) sinφdφdθ =

∫ 2π
0

[
8
(
φ
2
− sin 2φ

4

)
cos θ − 8 cosφ

]π
0
dθ =∫ 2π

0 (4π cos θ + 16)dθ = 32π

3. ∂
∂x

(x2) = 2x , ∂
∂y

(−2xy) = −2x , ∂
∂z

(3xz) = 3x ⇒ Flux =
∫∫∫
D

3xdxdydz

=
∫ π/2

0

∫ π/2
0

∫ 2
0 (3ρ sinφ cos θ)(ρ2 sinφ)dρdφdθ =

∫ π/2
0

∫ π/2
0 12 sin2 φ cos θdφdθ =∫ π/2

0 3π cos θdθ = 3π
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Exercises

Exercise 4.

Use the Divergence Theorem to find the outward flux of F across the
boundary of the region D.

1. Cylindrical can : F = (6x2 + 2xy)i + (2y + x2z)j + 4x2y3k
D : The region cut from the first octant by the cylinder x2 + y2 = 4
and the plane z = 3

2. Wedge : F = 2xz i− xy j− z2k
D : The wedge cut from the first octant by the plane y + z = 4 and
the elliptical cylinder 4x2 + y2 = 16

3. Sphere : F = x3i + y3j + z3k
D : The solid sphere x2 + y2 + z2 ≤ a2

P. Sam Johnson Divergence Theorem 12/36



Solution for Exercise 4

1. ∂
∂x

(6x2 + 2xy) = 12x + 2y , ∂
∂y

(2y + x2z) = 2,
∂
∂z

(4x2y3) = 0⇒ ∇ · F = 12x + 2y + 2⇒ Flux =
∫∫∫
D

(12x + 2y + 2)dV

=
∫ 3

0

∫ π/2
0

∫ 2
0 (12r cos θ + 2r sin θ + 2)rdrdθdz

=
∫ 3

0

∫ π/2
0 (32 cos θ + 16

3
sin θ + 4)dθdz =

∫ 3
0 (32 + 2π + 16

3
)dz = 112 + 6π

2. ∂
∂x

(2xz) = 2z, ∂
∂y

(−xy) = −x , ∂
∂z

(−z2) = −2z ⇒ ∇ · F = −x ⇒ Flux =
∫∫∫
D

−xdV

=
∫ 2

0

∫√16−4x2

0

∫ 4−y
0 −xdzdydx =

∫ 2
0

∫√16−4x2

0 (xy − 4x)dydx =∫ 2
0

[
1
2
x(16− 4x2)− 4x

√
16− 4x2

]
dx

=
[
4x2 − 1

2
x4 + 1

3
(16− 4x2)3/2

]2
0

= − 40
3

3. ∂
∂x

(x3) = 3x2, ∂
∂y

(y3) = 3y2, ∂
∂z

(z3) = 3z2 ⇒ ∇ · F = 3x2 + 3y2 + 3z2 ⇒ Flux

=
∫∫∫
D

3(x2 + y2 + z2)dV

= 3
∫ 2π

0

∫ π
0

∫ a
0 ρ

2(ρ2 sinφ)dρdφdθ = 3
∫ 2π

0

∫ π
0

a5

5
sinφdφdθ = 3

∫ 2π
0

2a5

5
dθ = 12πa5

5
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Exercises

Exercise 5.

Use the Divergence Theorem to find the outward flux of F across the
boundary of the region D.

1. Thick sphere : F = (x i + y j + zk)/
√

x2 + y2 + z2

D : The region 1 ≤ x2 + y2 + z2 ≤ 4

2. Thick cylinder : F = ln(x2 + y2)i−
(

2z
x tan−1 y

x

)
j + z

√
x2 + y2k

D : The thick-walled cylinder 1 ≤ x2 + y2 ≤ 2, −1 ≤ z ≤ 2
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Solution for Exercise 5

1. Let ρ =
√

x2 + y2 + z2. Then ∂ρ
∂x

= x
ρ

, ∂ρ
∂y

= y
ρ

,

∂ρ
∂z

= z
ρ
⇒ ∂

∂x

(
x
ρ

)
= 1

ρ
−
(

x
ρ2

)
∂ρ
∂x

= 1
ρ
− x2

ρ3 . Similarly,

∂
∂y

(
y
ρ

)
= 1

ρ
− y2

ρ3 and ∂
∂z

(
z
ρ

)
= 1

ρ
− z2

ρ3 ⇒ ∇ · F = 3
ρ
− x2+y2+z2

ρ3 = 2
ρ

⇒ Flux
=
∫∫∫
D

2
ρ
dV =

∫ 2π
0

∫ π
0

∫ 2
1

(
2
ρ

) (
ρ2 sinφ

)
dρdφdθ =

∫ 2π
0

∫ π
0 3 sinφdφdθ =

∫ 2π
0 6dθ = 12π

2. ∂
∂x

[ln(x2 + y2)] = 2x
x2+y2 , ∂

∂y

(
− 2z

x
tan−1 y

x

)
=
(
− 2z

x

) [ ( 1
x )

1+( y
x )2

]
= − 2z

x2+y2 ,

∂
∂z

(
z
√

x2 + y2
)

=
√

x2 + y2

⇒ ∇ · F = 2x
x2+y2 − 2z

x2+y2 +
√

x2 + y2 ⇒ Flux

=
∫∫∫
D

(
2x

x2+y2 − 2z
x2+y2 +

√
x2 + y2

)
dzdydx

=
∫ 2π

0

∫√2
1

∫ 2
−1

(
2r cos θ

r2 − 2z
r2 + r

)
dzrdrdθ =

∫ 2π
0

∫√2
1

(
6 cos θ − 3

r
+ 3r2

)
drdθ

−
∫ 2π

0

[
6
(√

2− 1
)

cos θ − 3 ln
√

2 + 2
√

2− 1
]
dθ = 2π

(
− 3

2
ln 2 + 2

√
2− 1

)
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Properties of Curl and Divergence : div(curl G) is zero

Exercise 6.

(a) Show that if the necessary partial derivatives of the components of
the field G = M i + N j + Pk are continuous, then ∇.∇× G = 0.

(b) What, if anything, can you conclude about the flux of the field ∇× G
across a closed surface? Give reason for your answer.
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Solution for Exercise 6

(a) G = M i + Nj + Pk⇒ ∇× G = curlG =(
∂P
∂y
− ∂N

∂z

)
i +
(
∂M
∂z
− ∂P

∂x

)
k +

(
∂N
∂x
− ∂M

∂y

)
k⇒ ∇ · ∇× G

= div(curlG) = ∂
∂x

(
∂P
∂y
− ∂N

∂z

)
+ ∂
∂y

(
∂M
∂z
− ∂P

∂x

)
+ ∂
∂z

(
∂N
∂x
− ∂M

∂y

)
= ∂2P

∂x∂y
− ∂2N
∂x∂z

+ ∂2M
∂y∂z

− ∂2P
∂y∂x

+ ∂2N
∂z∂x

− ∂2M
∂z∂y

= 0 if all first and second partial

derivatives are continuous

(b) By the Divergence Theorem, the outward flux of ∇× G across a closed surface is zero
because outward flux of ∇× G =

∫∫
S

(∇× G) · ndσ

=
∫∫∫
D

∇ · ∇ × GdV [Divergence Theorem with F = ∇× G]

=
∫∫∫
D

(0)dV = 0 [by part (a)]
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Exercises

Exercise 7.

Let F1 and F2 be differentiable vector field and let a and b be arbitrary
real constants. Verify the following identities.

(a) ∇ · (aF1 + bF2) = a∇ · F1 + b∇ · F2

(b) ∇× (aF1 + bF2) = a∇× F1 + b∇× F2

(c) ∇ · (F1 × F2) = F2 · ∇ × F1 − F1 · ∇ × F2
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Solution for Exercise 7

(a) Let F1 = M1 i + N1j + P1k and F2 = M2 i + N2j + P2k⇒ aF1 + bF2
= (aM1 + bM2)i + (aN1 + bN2)j + (aP1 + bP2)k⇒ ∇ · (aF1 + bF2)

=
(
a
∂M1
∂x

+ b
∂M2
∂x

)
+
(
a
∂N1
∂y

+ b
∂N2
∂y

)
+
(
a
∂P1
∂z

+ b
∂P2
∂z

)
= a

(
∂M1
∂x

+
∂N1
∂y

+
∂P1
∂z

)
+ b

(
∂M2
∂x

+
∂N2
∂y

+
∂P2
∂z

)
= a(∇ · F1) + b(∇ · F2)

(b) Define F1 and F2 as in part a⇒ ∇× (aF1 + bF2)

=
[(

a
∂P1
∂y

+ b
∂P2
∂y

)
−
(
a
∂N1
∂z

+ b
∂N2
∂z

)]
i +
[(

a
∂M1
∂z

+ b
∂M2
∂z

)
−
(
a
∂P1
∂x

+ b
∂P2
∂x

)]
j +[(

a
∂N1
∂x

+ b
∂N2
∂x

)
−
(
a
∂M1
∂y

+ b
∂M2
∂y

)]
k = a

[(
∂P1
∂y
− ∂N1

∂z

)
i +
(

∂M1
∂z
− ∂P1

∂x

)
j +
(

∂N1
∂x
− ∂M1

∂y

)
k
]

+

b
[(

∂P2
∂y
− ∂N2

∂z

)
i +
(

∂M2
∂z
− ∂P2

∂x

)
j +
(

∂N2
∂x
− ∂M2

∂y

)
k
]

= a∇× F1 + b∇× F2

(c) F1 × F2 =

∣∣∣∣∣∣
i j k

M1 N1 P1
M2 N2 P2

∣∣∣∣∣∣ = (N1P2 − P1N2)i− (M1P2 − P1M2)j + (M1N2 − N1M2)k⇒ ∇ · (F1 × F2)

= ∇ · [(N1P2 − P1N2)i− (M1P2 − P1M2)j + (M1N2 − N1M2)k]

= ∂
∂x

(N1P2 − P1N2)− ∂
∂y

(M1P2 − P1M2) + ∂
∂z

(M1N2 − N1M2) =
(
P2

∂N1
∂x

+ N1
∂P2
∂x
− N2

∂P1
∂x
− P1

∂N2
∂x

)
−(

M1
∂P2
∂y

+ P2
∂M1
∂y
− P1

∂M2
∂y
− M2

∂P1
∂y

)
+
(
M1

∂N2
∂z

+ N2
∂M1
∂z
− N1

∂M2
∂z
− M2

∂N1
∂z

)
= M2

(
∂P1
∂y
− ∂N1

∂z

)
+ N2

(
∂M1
∂z
− ∂P1

∂x

)
+ P2

(
∂N1
∂x
− ∂M1

∂y

)
+ M1

(
∂N2
∂z
− ∂P2

∂y

)
+ N1

(
∂P2
∂x
− ∂M2

∂z

)
+

P1

(
∂M2
∂y
− ∂N2

∂x

)
= F2 · ∇ × F1 − F1 · ∇ × F2
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Exercises

Exercise 8.

Let F be a differentiable vector field and let g(x , y , z) be a differentiable
scalar function. Verify the following identities.

(a) ∇ · (gF) = g∇ · F +∇g · F
(b) ∇× (gF) = g∇× F +∇g × F
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Solution for Exercise 8

(a) div(gF) = ∇ · gF = ∂
∂x

(gM) + ∂
∂y

(gN) + ∂
∂z

(gP) =
(
g ∂M

∂x
+ M ∂g

∂x

)
+
(
g ∂N

∂y
+ N ∂g

∂y

)
+
(
g ∂P

∂z
+ P ∂g

∂z

)
=
(
M ∂g

∂x
+ N ∂g

∂y
+ P ∂g

∂z

)
+ g

(
∂M
∂x

+ ∂N
∂y

+ ∂p
∂z

)
= g∇ · F +∇g · F

(b) ∇× (gF) =
[

∂
∂y

(gP)− ∂
∂z

(gN)
]
i +
[

∂
∂z

(gM)− ∂
∂x

(gP)
]
j +
[

∂
∂x

(gN)− ∂
∂y

(gM)
]
k

=
(
P ∂g

∂y
+ g ∂P

∂y
− N ∂g

∂z
− g ∂N

∂z

)
i +
(
M ∂g

∂z
+ g ∂M

∂z
− P ∂g

∂x
− g ∂P

∂x

)
j +
(
N ∂g

∂x
+ g ∂N

∂x
− M ∂g

∂y
− g ∂M

∂y

)
k

=
(
P ∂g

∂y
− N ∂g

∂z

)
i +
(
g ∂P

∂y
− g ∂N

∂z

)
i +
(
M ∂g

∂z
− P ∂g

∂x

)
j +
(
g ∂M

∂z
− g ∂P

∂x

)
j +
(
N ∂g

∂x
− M ∂g

∂y

)
k +(

g ∂N
∂x
− g ∂M

∂y

)
k = g∇× F +∇g × F
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Exercises

Exercise 9.

If F = M i + N j + Pk is a differentiable vector field, we define the notation
F · ∇ to mean

M
∂

∂x
+ N

∂

∂y
+ P

∂

∂z
.

For differentiable vector fields F1 and F2, verify the following identities.

(a) ∇× (F1 × F2) = (F2 · ∇)F1 − (F1.∇)F2 + (∇ · F2)F1 − (∇ · F1)F2

(b) ∇(F1 · F2) = (F1 · ∇)F2 + (F2.∇)F1 + F1 × (∇× F2) + F2 × (∇× F1)
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Solution for Exercise 9

Let F1 = M1 i + N1j + P1k and F2 = M2 i + N2j + P2k

(a) F1 × F2 = (N1P2 − P1N2)i + (P1M2 − M1P2)j + (M1N2 − N1M2)k⇒ ∇× (F1 × F2)

=
[

∂
∂y

(M1N2 − N1M2)− ∂
∂z

(P1M2 − M1P2)
]
i +
[

∂
∂z

(N1P2 − P1N2)− ∂
∂x

(M1N2 − N1M2)
]
j +[

∂
∂x

(P1M2 − M1P2)− ∂
∂y

(N1P2 − P1N2)
]
k

and consider the i-component only: ∂
∂y

(M1N2 − N1M2)− ∂
∂z

(P1M2 − M1P2)

= N2
∂M1
∂y

+ M1
∂N2
∂y
− M2

∂N1
∂y
− N1

∂M2
∂y
− M2

∂P1
∂z
− P1

∂M2
∂z

+ P2
∂M1
∂z

+ M1
∂P2
∂z

=
(
N2

∂M1
∂y

+ P2
∂M1
∂z

)
−
(
N1

∂M2
∂y

+ P1
∂M2
∂z

)
+
(

∂N2
∂y

+
∂P2
∂z

)
M1 −

(
∂N1
∂y

+
∂P1
∂z

)
M2

=
(
M2

∂M1
∂x

+ N2
∂M1
∂y

+ P2
∂M1
∂z

)
−
(
M1

∂M2
∂x

+ N1
∂M2
∂y

+ P1
∂M2
∂z

)
+
(

∂M2
∂x

+
∂N2
∂y

+
∂P2
∂z

)
M1 −(

∂M1
∂x

+
∂N1
∂y

+
∂P1
∂z

)
M2. Now, i-comp of (F2 · ∇)F1 =

(
M2

∂
∂x

+ N2
∂
∂y

+ P2
∂
∂z

)
M1

=
(
M2

∂M1
∂x

+ N2
∂M1
∂y

+ P2
∂M1
∂z

)
; likewise, i-comp of (F1 · ∇)F2 =

(
M1

∂M2
∂x

+ N1
∂M2
∂y

+ P1
∂M2
∂z

)
; i-comp of

(∇ · F2)F1 =
(

∂M2
∂x

+
∂N2
∂y

+
∂P2
∂z

)
M1 and i-comp of (∇ · F1)F2 =

(
∂M1
∂x

+
∂N1
∂y

+
∂P1
∂z

)
M2.

Similar results hold for the j and k components of ∇× (F1 × F2). In summary, since the corresponding components are
equal,we have the result
∇× (F1 × F2) = (F2 · ∇)F1 − (F1 · ∇)F2 + (∇ · F2)F1 − (∇ · F1)F2

(b) Here again we consider only the i-component of each expression. Thus, the i-comp of

∇(F1 · F2) = ∂
∂x

(M1M2 + N1N2 + P1P2) =
(
M1

∂M2
∂x

+ M2
∂M1
∂x

+ N1
∂N2
∂x

+ N2
∂N1
∂x

+ P1
∂P2
∂x

+ P2
∂P1
∂x

)
,

i-comp of (F1 · ∇)F2 =
(
M1

∂M2
∂x

+ N1
∂M2
∂y

+ P1
∂M2
∂z

)
, i-comp of (F2 · ∇)F1 =

(
M2

∂M1
∂x

+ N2
∂M1
∂y

+ P2
∂M1
∂z

)
,

i-comp of F1 × (∇× F2) = N1

(
∂N2
∂x
− ∂M2

∂y

)
− P1

(
∂M2
∂z
− ∂P2

∂x

)
, and

i-comp of F2 × (∇× F1) = N2

(
∂N1
∂x
− ∂M1

∂y

)
− P2

(
∂M1
∂z
− ∂P1

∂x

)
. Since corresponding components are equal,

we see that ∇(F1 · F2) = (F1 · ∇)F2 + (F2 · ∇)F1 + F1 × (∇× F2) + F2 × (∇× F1), as claimed.
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Exercises

Exercise 10.

1. Let F be a field whose components have continuous first partial derivatives throughout a
portion of space containing a region D bounded by a smooth closed surface S . If |F| ≤ 1,
can any bound be placed on the size of∫∫∫

D

∇ · F dV ?

Give reasons for your answer.

2. The base of the closed cubelike surface shown here is the unit square in the xy -plane. The
four sides lie in the planes x = 0, x = 1, y = 0, and y = 1. The top is an arbitrary
smooth surface whose identity is unknown. Let F = x i− 2y j + (z + 3)k and suppose the
outward flux of F through Side A is 1 and through Side B is -3. Can you conclude
anything about the outward flux through the top? Give reasons for your answer.
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Solution for Exercise 10

1. The integral’s value never exceeds the surface area of S . Since |F| ≤ 1, we have
|F · n| = |F||n| ≤ (1)(1) = 1 and

∫∫∫
D

∇ · Fdσ =

∫∫
S

F · ndσ [Divergence Theorem]

≤
∫∫
S

|F · n|dσ [A property of integrals]

≤
∫∫
S

(1)dσ [|F · n| ≤ 1]

= Area of S.

2. Yes, the outward flux through the top in 5. The reason is this: Since
∇ · F = ∇ · (x i− 2y j + (z + 3)k) = 1− 2 + 1 = 0, the outward flux across the closed
cubelike surface is 0 by the Divergence Theorem. The flux across the top is therefore the
negative of the flux across the sides and base. Routine calculations show that the sum of
these latter fluxes is -5. (The flux across the sides that lie in the xz-plane and the yz-plane
are 0, while the flux across the xy -plane is -3.) Therefore the flux across the top is 5.
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Exercises

Exercise 11.

1. (a) Show that the outward flux of the position vector field F = x i + y j + zk
through a smooth closed surface S is three times the volume of the
region enclosed by the surface.

(b) Let n be the outward unit normal vector field on S . Show that it is not
possible for F to be orthogonal to n at every point of S .

2. Maximum flux Among all rectangular solids defined by the inequalities 0 ≤ x ≤ a,
0 ≤ y ≤ b, 0 ≤ z ≤ 1, find the one for which the total flux of
F = (−x2 − 4xy)i− 6yz j + 12zk out-ward through the six sides is greatest. What is the
greatest flux?

3. Volume of a solid region : Let F = x i + y j + zk and suppose that the surface S and
region D satisfy the hypotheses of the Divergence Theorem. Show that the volume of D
is given by the formula

Volume ofD =
1

3

∫∫
S

F · n dσ.

4. Outward flux of a constant field : Show that the outward flux of a constant vector field
F = C across any closed surface to which the Divergence Theorem applies is zero.
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Solution for Exercise 11

1. (a) ∂
∂x (x) = 1, ∂

∂y (y) = 1, ∂
∂z (z) = 1⇒ ∇ · F = 3⇒ Flux

=
∫∫∫
D

3dV = 3
∫∫∫
D

dV = 3 (Volume of the solid)

(b) If F is orthogonal to n at every point of S , then F · n = 0 everywhere
⇒ Flux =

∫∫
S

F · ndσ = 0. But the flux is 3 (Volume of the solid) 6= 0,

so F is not orthogonal to n at every point.
2. ∇ · F = −2x − 4y − 6z + 12⇒ Flux

=
∫ a

0

∫ b
0

∫ 1
0 (−2x − 4y − 6z + 12)dzdydx =

∫ a
0

∫ b
0 (−2x − 4y + 9)dydx

=
∫ a

0 (−2xb − 2b2 + 9b)dx = −a2b − 2ab2 + 9ab = ab(−a− 2b + 9) = f (a, b); ∂f
∂a

=

−2ab − 2b2 + 9b and ∂f
∂b

= −a2 − 4ab + 9a so that ∂f
∂a

= 0 and
∂f
∂b

= 0⇒ b(−2a− 2b + 9) = 0 and a(−a− 4b + 9) = 0⇒ b = 0 or −2a− 2b + 9 = 0,
and a = 0 or −a− 4b + 9 = 0. Now b = 0 or a = 0 ⇒ Flux = 0; −2a− 2b + 9 = 0 and
−a− 4b + 9 = 0⇒ 3a− 9 = 0⇒ a = 3⇒ b = 3

2
so that f (3, 3

2
) = 27

2
is the maximum

flux.

3.
∫∫
S

F · ndσ =
∫∫∫
D

∇ · FdV =
∫∫∫
D

3dV ⇒ 1
3

∫∫
S

F · ndσ =
∫∫∫
D

dV = Volume of D

4. F = C⇒ ∇ · F = 0⇒ Flux =
∫∫
S

F · ndσ =
∫∫∫
D

∇ · FdV =
∫∫∫
D

0dV = 0
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Exercises

Exercise 12.

1. Harmonic functions : A function f (x , y , z) is said to be harmonic in a region D in space if
it satisfies the Laplace equation

∇2f = ∇ · ∇f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
= 0

throughout D.

(a) Suppose that f is harmonic throughout a bounded region D enclosed by a smooth

surface S and that n is the chosen unit normal vector on S . Show that the integral

over S of ∇f · n, the derivative of f in the direction of n, is zero.
(b) Show that if f is harmonic on D, then∫∫

S

f∇f · n dσ =

∫∫∫
D

|∇f |2 dV .

2. Outward flux of a gradient field : Let S be the surface of the portion of the solid sphere
x2 + y2 + z2 ≤ a2 that lies in the first octant and let f (x , y , z) = ln

√
x2 + y2 + z2.

Calculate ∫∫
S

∇f · n dσ.

(∇f · n is the derivative of f in the direction of outward normal n.)
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Solution for Exercise 12

1. (a) From the Divergence Theorem,∫∫
S

∇f · ndσ =
∫∫∫
D

∇ · ∇fdV =
∫∫∫
D

∇2fdV =
∫∫∫
D

0dV = 0.

(b) From the divergence Theorem,
∫∫
S

f∇f · ndσ =
∫∫∫
D

∇ · f∇fdV . Now,

f∇f =
(
f ∂f
∂x

)
i +
(
f ∂f
∂y

)
j +
(
f ∂f
∂z

)
k⇒ ∇ · f∇f =[

f ∂
2f
∂x2 +

(
∂f
∂x

)2
]

+

[
f ∂

2f
∂y2 +

(
∂f
∂y

)2
]

+

[
f ∂

2f
∂z2 +

(
∂f
∂z

)2
]

= f∇2f + |∇f |2 = 0 + |∇f |2 since f is harmonic ⇒
∫∫
S

f∇f · ndσ =
∫∫∫
D

|∇f |2dV ,

as claimed.

2. From the Divergence Theorem,∫∫
S

∇f · ndσ =
∫∫∫
D

∇ · ∇fdV =
∫∫∫
D

(
∂2f
∂x2 + ∂2f

∂y2 + ∂2f
∂z2

)
dV . Now,

f (x , y , z) = ln
√

x2 + y2 + z2 = 1
2

ln(x2 + y2 + z2)⇒ ∂f
∂x

= x
x2+y2+z2 , ∂f

∂y
= y

x2+y2+z2 ,
∂f
∂z

= z
x2+y2+z2

⇒ ∂2f
∂x2 = −x2+y2+z2

(x2+y2+z2)2 , ∂
2f
∂y2 = x2−y2+z2

(x2+y2+z2)2 , ∂
2f
∂z2 = x2+y2−z2

(x2+y2+z2)2 , ⇒ ∂2f
∂x2 + ∂2f

∂y2 + ∂2f
∂z2

= x2+y2+z2

(x2+y2+z2)2 = 1
x2+y2+z2 ⇒

∫∫
S

∇f ·ndσ =
∫∫∫
D

dV
x2+y2+z2 =

∫ π/2
0

∫ π/2
0

∫ a
0
ρ2 sinφ
ρ2 dρdφdθ

=
∫ π/2

0

∫ π/2
0 a sinφdφdθ =

∫ π/2
0 [−a cosφ]

π/2
0 dθ =

∫ π/2
0 adθ = πa

2
.
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Exercises

Exercise 13.
1. Green’s first formula Suppose that f and g are scalar functions with continuous first- and second-order partial

derivatives throughout a region D that is bounded by a closed piecewise smooth surface S . Show that

∫∫
S

f∇g · n dσ =

∫∫∫
D

(f∇2g +∇f · ∇g) dV . (1)

Equation (1) is Green’s first formula. (Hint: Apply the Divergence Theorem to the field F = f∇g .)

2. Green’s second formula (Continuation of Exercise 25.) Interchange f and g in Equation (1) to obtain a similar formula.
Then subtract this formula from Equation (1) to show that

∫∫
S

(f∇g − g∇f ) · n dσ =

∫∫∫
D

(f∇2g − g∇2f ) dV . (2)

This equation is Green’s second formula.

P. Sam Johnson Divergence Theorem 30/36



Solution for Exercise 13

1.
∫∫
S

f∇g · ndσ =
∫∫∫
D

∇ · f∇gdV =
∫∫∫
D

∇ ·
(
f ∂g
∂x

i + f ∂g
∂y

j + f ∂g
∂z

k
)
dV

=
∫∫∫
D

(
f ∂

2g
∂x2 + ∂f

∂x
∂g
∂x

+ f ∂
2g
∂y2 + ∂f

∂y
∂g
∂y

+ f ∂
2g
∂z2 + ∂f

∂z
∂g
∂z

)
dV

=
∫∫∫
D

[
f
(
∂2g
∂x2 + ∂2g

∂y2 + ∂2g
∂z2

)
+
(
∂f
∂x

∂g
∂x

+ ∂f
∂y

∂g
∂y

+ ∂f
∂z

∂g
∂z

)]
dV =∫∫∫

D

(
f∇2g +∇f · ∇g

)
dV

2. By the above exercise,
∫∫
S

f∇g · ndσ =
∫∫∫
D

(
f∇2g +∇f · ∇g

)
dV and by interchanging

the roles of f and g ,∫∫
S

g∇f · ndσ =
∫∫∫
D

(
g∇2f +∇g · ∇f

)
dV . Subtracting the second equation from the

first yields:∫∫
S

(f∇g − g∇f ) · ndσ =
∫∫∫
D

(f∇2g − g∇2f )dV since ∇f · ∇g = ∇g · ∇f .
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Conservation of mass

Exercise 14.

Let v(t, x , y , z) be a continuously differentiable vector field over the region D in space and let
p(t, x , y , z) be a continuously differentiable scalar function. The variable t represents the time
domain. The Law of Conservation of Mass asserts that

d

dt

∫∫∫
D

p(t, x , y , z) dV = −
∫∫
S

pv · n dσ,

where S is the surface enclosing D.

(a) Give a physical interpretation of the conservation of mass law if v is a velocity flow field
and p represents the density of the fluid at point (x , y , z) at time t.

(b) Use the Divergence Theorem and Leibniz’s Rule,

d

dt

∫∫∫
D

p(t, x , y , z) dV =

∫∫∫
D

∂p

∂t
dV ,

to show that the Law of Conservation of Mass is equivalent to the continuity equation,

∇.pv +
∂p

∂t
= 0.

(In the first term ∇.pv the variable t is held fixed, and in the second term ∂P/∂t, it is
assumed that the point (x , y , z) in D is held fixed.)
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Solution for Exercise 14

(a) The integral
∫∫∫
D

p(t, x , y , z)dV represents the mass of the fluid at any time t. The

equation says that the instantaneous rate of change of mass is flux of the fluid through
the surface S enclosing the region D: the mass decreases if the flux is outward (so the
fluid flows out of D), and increases if the flow is inward (interpreting n as the outward
pointing unit normal to the surface).

(b)
∫∫∫
D

∂p
∂t

dV = d
dt

∫∫∫
D

pdV = −
∫∫
S

pv · ndσ = −
∫∫∫
D

∇ · pvdV ⇒ ∂ρ
∂t

= −∇ · pv

Since the law is to hold for all regions D, ∇ · pv + ∂p
∂t

= 0, as claimed.
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The heat diffusion equation

Exercise 15.

Let T (t, x , y , z) be a function with continuous second derivatives giving the temperature at
time t at the point (x , y , z) of a solid occupying a region D in space. If the solid’s heat capacity
and mass density are denoted by the constants c and ρ, respectively, the quantity cρT is called
the solid’s heat energy per unit volume.

(a) Explain why −∇T points in the direction of heat flow.

(b) Let −k∇T denote the energy flux vector. (Here the constant k is called the
conductivity.) Assuming the Law of Conservation of Mass with −k∇T = v and cρT = p
in Exercise 27, derive the diffusion (heat) equation

∂T

∂t
= K∇2T ,

where K = k/(cρ) > 0 is the diffusivity constant. (Notice that if T (t, x) represents the
temperature at time t at position x in a uniform conducting rod with perfectly insulated
sides, then ∇2T = ∂2T/∂x2 and the diffusion equation reduces to the one-dimensional
heat equation in Chapter 14’s Additional Exercises.)
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Solution for Exercise 15

(a) ∇T points in the direction of maximum change of the temperature, so if the solid is
heating up at the point the temperature is greater in a region surrounding the point
⇒ ∇T points away from the point ⇒ −∇T points toward the point ⇒ −∇T points in
the direction the heat flows.

(b) Assuming the Law of Conservation of Mass (Exercise 31) with −k∇T = pv and cρT = p,
we have d

dt

∫∫∫
D

cρTdV = −
∫∫
S

−k∇T · ndσ ⇒ the continuity equation,

∇ · (−k∇T ) + ∂
∂t

(cρT ) = 0

⇒ cρ ∂T
∂t

= −∇ · (−k∇T ) = k∇2T ⇒ ∂T
∂t

= k
cρ
∇2T = K∇2T , as claimed.
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